
Application-Bypass Broadcast in MPICH over GM
�

Darius Buntinas
�

Dhabaleswar K. Panda
�

Ron Brightwell
���

�
Network-Based Computing Laboratory

���
Scalable Computing Systems Dept.

Dept. of Computer and Information Science Sandia National Laboratories
�

The Ohio State University bright@cs.sandia.gov�
buntinas, panda � @cis.ohio-state.edu

Abstract

Processes of a parallel program can become unsyn-
chronized, or skewed, during the course of running an
application. Processes can become skewed as a result
of unbalanced or asymmetric code, or through the use
of heterogeneous systems, where nodes in the system
have different performance characteristics, as well as
random, unpredictable effects such as the processes not
being started at exactly the same time, or processors re-
ceiving interrupts during computation. Geographically
distributed systems may have more severe skew because
of variable communication times. Such skew can have a
significant impact on the performance of collective com-
munication operations which impose an implicit syn-
chronization. The broadcast operation in MPICH is one
such operation. An application-bypass broadcast oper-
ation is one which does not depend on the application
running at a process to make progress. Such an oper-
ation would not be as sensitive to process skew. This
paper describes the design and implementation of an
application-bypass broadcast operation. We evaluated
the implementation and find a factor of improvement of
up to 16 for application-bypass broadcast compared to
non-application-bypass broadcast when processes are
skewed. Furthermore we see that as the system size in-
creases, the effects of skew on non-application-bypass
broadcast also increase. The application-bypass broad-
cast is much less sensitive to process skew which makes
it more scalable than the non-application-bypass broad-
cast operation.

1. Introduction
Process skew is an important aspect in parallel and

distributed systems which has not received much at-
tention. Many collective communication benchmarks
[12, 14] perform the collective communication with all

�
This research is supported in part by a DOE grant #DE-F002-

01ER25506 and NSF grants #EIA-9986052 and #CCR-0204429.

processes starting the operation at the same time. While
this would be ideal when running a parallel applica-
tion, it is not realistic. Processes can become skewed
as a result of unbalanced code, where one process has
more computation to perform than others, of asymmetric
code, where different processes perform different com-
putation or communication operations, of using hetero-
geneous systems, where nodes in the system have dif-
ferent performance characteristics, as well as of ran-
dom, unpredictable effects such as the processes not be-
ing started at exactly the same time, or processors re-
ceiving interrupts during computation. Process skew
may be more severe in georgaphically distributed com-
puting systems, where communication time between re-
mote nodes may be variable. The effects of process skew
become more severe as the size of the system grows.

Collective communication operations can impose im-
plicit synchronization. When processes are skewed,
such synchronization will cause certain processes to
wait idle for other processes to catch-up. With certain
collective communication operations this synchroniza-
tion is unavoidable unless a split-phase approach is used,
such as a reduce-to-all operation where all processes
must provide input and start the operation before any can
finish, and with others, such as barrier, synchronization
is the desired effect. However for other collective opera-
tions such as broadcast and reduce-to-one it is desirable
to reduce the amount of implicit synchronization in or-
der to reduce the effects of skew and improve overall
system performance.

For instance, the broadcast operation in MPICH [8]
is implemented such that a process will not forward the
broadcast message until that process has made a call to
MPI Bcast() and received the message. If a process
is slow to call MPI Bcast(), other processes may be
delayed as a result. A more desirable implementation
would be to allow the broadcast operation to bypass the
application. The concept of application-bypass opera-
tions was discussed in [3]. We will describe application-
bypass in detail in the next section.



0 1 2 3

(a) Non-application-bypass

0 1 2 3

(b) Application-bypass
Figure 1. Broadcast operation over four processes. The large arrows represent timelines for
each process. The shaded areas in these timelines represent a call by the application to the
broadcast function, and the small arrows represent broadcast messages.

We have designed and implemented an application-
bypass broadcast operation by modifying GM [11] and
MPICH over GM. We then evaluated our implemen-
tation and found that using application-bypass broad-
cast we see a factor of improvement of up to 16 when
the processes are skewed. We also noticed that the ef-
fects of process skew become more severe as system
size increases, and that application-bypass broadcast is
considerably less sensitive to process skew than non-
application-bypass broadcast. This indicates that that an
application-bypass approach is critical for dealing with
process skew allowing collective communications oper-
ations to be scalable.

The outline of the rest of the paper is as fol-
lows. In the next section we describe the basic idea
of application-bypass. The design and implementation
of our application-bypass broadcast operation are de-
scribed in Section 3. We evaluate our implementation
in Section 4, the conclude in Section 5.

2. Application-bypass
The basic idea of an application-bypass operation is

that the application need not be involved in order for the
operation to proceed. Broadcast is an operation which
can be implemented in an application-bypass manner.
The broadcast operation in many message passing sys-
tems is performed by creating a logical binomial tree
over the processes participating in the broadcast. The
root process sends a copy of the data to each of its chil-
dren. Each non-root process waits to receive the data,
then sends copies of the data to each of its children, if
any. At the application level, each process pariticipating
in the broadcast will call the broadcast function.

In MPICH, the MPI Bcast() function performs the
broadcast by first waiting for the message to be received
from the parent process, if this process is not the root,
then sending copies of the message to each child pro-
cess. The broadcast operation in MPICH is not imple-
mented in an application-bypass manner. If a message is
received by a process, the message will not be forwarded
to its children until the process calls MPI Bcast().

This means that if a non-root, non-leaf node is delayed,
the descendants of that process will also be delayed,
even if they have called MPI Bcast(), and are wait-
ing for the message. If the broadcast operation were
implemented in an application-bypass manner, as soon
as a process receives a broadcast message, it would for-
ward the message to its children, regardless of whether
the process has called MPI Bcast().

Figure 1 illustrates the concept of an application-
bypass broadcast. Figure 1(a) shows a non-applica-
tion-bypass broadcast, while Figure 1(b) shows an app-
lication-bypass broadcast. These diagrams show four
processes, the root process, Process 0, sends messages
to its children, Processes 2 and 1. Process 2 receives
the message and sends it to Process 3. Notice that in
this example, the processes do not call broadcast at the
same time, in particular, Process 2 calls the broadcast
call much later than Processes 0 and 3. Because of this,
in the non-application-bypass case show in Figure 1(a)
we see that even though Process 3 had called the broad-
cast function and was waiting for the message, it did
not receive the message until after Process 2 finished its
computation and called the broadcast function.

In the application-bypass case shown in Figure 1(b),
as soon as the broadcast message arrives at Process 2,
it receives the data into a temporary buffer, and sends a
copy to Process 3. Process 3 can receive the message
much sooner because it doesn’t have to wait for Pro-
cess 2 to call the broadcast function. Once Process 2
calls the broadcast function, it will copy the data for the
broadcast message from the temporary buffer to its final
location.

Application-bypass operations can be even more im-
portant in large scale or heterogeneous systems. In such
systems it is more likely for processes to be skewed,
and so collective communication operations may not be
called at the same time by all of the processes. Non-
application-bypass operations can impose implicit syn-
chronization among the processes, which means some
faster processes will sit idle waiting for slower pro-
cesses to catch up. Application-bypass operations can

2



reduce the amount of synchronization that such opera-
tions cause. This can reduce the amount of time pro-
cesses spend waiting for each other and can improve
overall application performance.

We note that some networks provide a broadcast
primitive. Such broadcast operations bypass the applica-
tion because they are performed by the network, and not
the host. In this paper, however, we describe application-
bypass broadcast on a netowrk which does not provide
the broadcast primitive.

3. Design and implementation
In this section we will describe the design and im-

plementation of application-bypass broadcast. We start
by identifying some design alternatives which we con-
sidered, next we give an overview of MPICH over GM,
then describe our implementation in detail.

3.1. Design alternatives
We identified several options for implementing

application-bypass broadcast. One design option would
be to use a broadcast thread to perform the broadcast op-
eration. To perform a broadcast, the main thread would
send a message to its broadcast thread. The broad-
cast thread would be polling for incoming messages
and would broadcast the message among the broadcast
threads associated with the other processes. After broad-
casting the message, the broadcast threads would send
the message to their main thread. Because the broad-
cast thread is constantly polling for incoming messages
it consumes processor resources which could be better
used by its main thread, on a uniprocessor system, or
by additional computation threads on an SMP system.
For this reason this option may not be practical in a real
system.

Another alternative would be to have the broadcast
thread block while waiting for an incoming message.
This option would not waste processor resources, but
would increase the latency of performing a broadcast be-
cause of the interrupt overhead. The cost of performing
interrupts for every broadcast may make this option im-
practical.

We chose to implement a third option which uses a
single thread and a signal handler. This option does not
waste processor resources because the signal hander is
only called when a message needs to be processed. Fur-
thermore, because there is only one thread, when the
thread is polling for a message, there is no need for a
signal to be generated to process an incoming message.
Our implementation allows the thread to disable inter-
rupts at the NIC when polling for a message. This gives
us the best of both previous design alternatives: low la-
tency broadcast and low processor usage overhead.

3.2. Overview of GM and MPICH over GM
Before we describe our implementation we will

briefly describe some internal details of GM and MPICH

Myrinet

GM

NIC component

component
Kernel

MPICH

Application

Figure 2. Software and hardware layers for
MPICH over GM

over GM. Figure 2 shows the software and hardware
layers associated with MPICH over GM. GM is a user-
level communication subsystem over the Myrinet [2]
network. The Myrinet network is a 2Gbps full duplex
network with network interface cards (NICs) that have
programmable processors. GM consists of a kernel com-
ponent, a user-level library and a NIC component. The
kernel component is used for things like setting up new
communication endpoints, and registering memory, and
is not used in the critical path. The NIC component is
code which is executed on the NIC processor. Almost
all of the protocol processing is performed at the NIC.
The user-level library is basically used as an interface
between the host process and the NIC code.

MPICH is an implementation of the MPI [10] mes-
sage passing interface standard. MPICH has been ported
to many different platforms and networks including GM.

The broadcast operation in MPICH is performed, as
described earlier, by propagating messages over a broad-
cast tree. Each process participating in the broadcast
makes a call to MPI Bcast(). The root node and
source or destination buffer are specified as parame-
ters to this function. A communicator is also given
as a parameter which specifies the group of processes
which will participate in the broadcast. In the call to
MPI Bcast(), each process determines its parent pro-
cess, if any, then waits to receive the message from this
process. Once the message is received, it determines
which processes are its children and sends the message
to them.

When a process makes a call to receive a message,
MPICH checks to see if the message has already been
received. It searches a queue called the unexpected mes-
sage queue for messages which match certain criteria
specified in the receive call, such as sender id, datatype,
and tag. If the message is not found, a descriptor is
posted describing the anticipated message, as well as the
memory location where the data should be received into.
MPICH will then optionally poll for incoming messages
until the message has been received.

When a message arrives at a process, MPICH first
checks the list of posted receives, to see if this message
is expected. If it is expected, it copies the data to the
location specified in the descriptor, then marks the de-

3



scriptor that the receive has completed. If MPICH finds
no posted descriptor matching the incoming message,
the message is copied into the unexpected queue.

MPICH over GM uses two modes in sending mes-
sages: eager and rendez-vous. The eager mode is used
to send small messages. In this mode the data for the
message is copied into a send buffer and is transmitted
from the buffer. The copy to a send buffer is necessary
because GM can only send data which is located in a
pinned memory region. Pinning a memory region re-
quires a system call and so is faster to copy the data to a
pre-pinned buffer and send it from there than to perform
the system call to pin the data in its original location.
When the message is received, GM places the message
in a pre-pinned buffer at the receiver. The data for the
message must then be copied out of this buffer to its fi-
nal location.

For large messages because the cost of copying the
data becomes quite large, it is faster to pin the memory
of the original source of the data at the sender and the fi-
nal destination at the receiver, then send the data directly
from the original location to the final destination elimi-
nating any copies of the data. The rendez-vous protocol
is used to perform this. The sender sends a request-to-
send message to the receiver, pins the memory for the
source of the data and waits for a response from the re-
ceiver. Upon receiving the request-to-send message, the
receiver pins the memory for the final destination of the
data and sends the address of this to the sender in a OK-
to-send message. When the sender receives this mes-
sage, it sends the data directly from the source location
to the remote destination.

3.3. Our implementation
We modified MPICH over GM version 1.2.4..8a to

provide application-bypass broadcast functionality. We
also modified GM version 1.5.2.1 to allow signals to be
generated when messages are received.

In MPICH, the broadcast operation is performed by
a process when the application calls MPI Bcast(). In
order for the broadcast operation to bypass the appli-
cation, the broadcast operation would have to be per-
formed as soon as the broadcast message is received by
the MPICH library. We did this by defining a new mes-
sage type. When such a message type is received by the
MPICH progress engine, copies of the message are sent
to each of the children. Once the copies of the message
are sent, the progress engine handles the message the
same way as any other received message.

The list of children of a process is calculated by
knowing the processes that are participating in the
broadcast and which process is the root of the broadcast.
Normally these parameters are supplied by the applica-
tion to the MPI Bcast() call. However, in our imple-
mentation, for non-root nodes, the broadcast operation is
not performed in the MPI Bcast() function. Instead,
we added a field to the header of broadcast messages

to identify the root. Also, MPICH includes a context
id field in each message which can be used to uniquely
identify an MPI communicator. A communicator spec-
ifies which processes are participating in a collective
communication. When a communicator is created, we
computed the list of children for that communicator, for
each possible root. We store this array of lists of children
in a hash table hashed on the communicator’s context id.
Then when an incoming broadcast message is received,
we can get the list of children by getting the array from
the hash table using the context id of the message, and
indexing on the root, which is also given in the message.

In our implementation of application-bypass broad-
cast, we only considered messages sent in the eager
mode. For MPICH over GM these are messages which
are less than 16KB. With rendez-vous messages, the fi-
nal destination must be known in order for the mes-
sage to be sent. However, the final destination of the
broadcast message is not known until the application
calls MPI Bcast(). Using a temporary buffer to store
a broadcast rendez-vous message would require mem-
ory copies which would defeat the purpose of using the
rendez-vous mode for large messages. We intend to
study this issue in the future.

We added a signal handler which calls the progress
engine to process any new messages. In order to avoid
race conditions we added a mutex variable which is set
when the process calls the progress engine. When the
signal handler is called, it checks the mutex variable and
exits if it is set. The mutex variable is reset when the
process exits the progress engine. However, this could
lead to a case where we could lose a signal for a new
broadcast message. For example, a new broadcast mes-
sage could be received just before the process left the
progress engine. The signal handler would be called,
but it would exit immediately, because the mutex vari-
able indicates that the process is executing the progress
engine. When the process continues executing, it would
leave the progress engine without handling the newly
received broadcast message. To deal with this situa-
tion, we added a loop around the progress engine which
keeps calling the progress engine while there are mes-
sages waiting to be received. This way, any broadcast
message received after the progress engine processed the
last message, and before it resets the mutex will be han-
dled, because the loop condition will find that there is a
pending receive. Any broadcast message received after
the mutex variable is reset will be handled by the signal
handler.

GM does not have the capability to generate signals
when a message is received. We modified GM to add
this capability. Since performing an interrupt for every
incoming message would have a severe impact on per-
formance, we wanted to perform interrupts only when
necessary. We did this by defining a new packet type in
GM. Only the reception of these packets generates a sig-

4



nal. This way the sender of a message can specify that a
signal will be generated for the receiving process when
the message is received.

We also allow a process to disable the signal genera-
tion at the user level. We added a flag to the data struc-
ture at the NIC which is mapped into the process’ ad-
dress space. The process simply has to write to the flag
to enable or disable signal generation. Since this flag
is located in NIC memory any accesses by the host will
go over the PCI bus. This is considerably slower than
accessing local memory, and may interfere with other
PCI traffic. For this reason care must be taken when
accessing this flag not to adversely impact system per-
formance.

We used the signaling capability that we added to GM
to generate signals for sending broadcast messages to
non-leaf nodes. This limits the number of interrupts to
only those cases where it could benefit. Furthermore,
we disabled signaling at the NIC whenever the process
calls MPI Bcast() or whenever the process is waiting
for a receive. This way, if the process is already polling
for a message, there is no need to generate a signal to
have the broadcast message processed. By eliminating
as many interrupts as possible, we reduce the impact of
using a signal handler while giving us the advantages of
application-bypass broadcast.

4. Experimental results
We performed our evaluation on a 32 node clus-

ter consisting of 16 700MHz quad-SMP Pentium III
nodes with 66MHz/64 bit PCI slots, and 16 1GHz dual-
SMP Pentium III nodes with 33MHz/32 bit PCI slots.
The cluster was connected using a Myrinet-2000 net-
work. The network consists of 28 PCI64B cards with
133MHz LANai 9.1 processors and 4 PCI64C cards
with 200MHz LANai 9.2 processors and are connected
using fiber cables to a 32 port switch. Each of the nodes
ran the 2.4.18 Linux kernel. Our tests were performed
using GM version 1.2.5.1 and MPICH version 1.2.4..8a
which are the same versions as our modified GM and
MPICH.

We evaluated our implementation using micro-
benchmarks. The first micro-benchmark compares the
average time to perform MPI Bcast(). In this micro-
benchmark, the root process calls MPI Bcast() while
the other processes perform a delay loop, followed by
a call to MPI Bcast(). This test is performed 1,000
times with an MPI Barrier() being called before
each test. The number of iterations a process performs
in the delay loop is chosen randomly, between 0 and a
maximum delay value, by each process each time the
test is performed. Notice that increasing the maximum
delay value, increases the skew between the processes.

Since we used a heterogeneous system, we wanted to
normalize the delay loops. We did this by having each
process count how many iterations it can compute in

50µs . The maximum delay value was then incremented
by that many iterations. For the 700 MHz machines,
this was about 17,500 iterations, while on the 1GHz ma-
chines this was about 25,000. The graphs show the av-
erage skew time in microseconds for convenience.

Figure 3 shows the average time each process spent
in the MPI Bcast() call over 32 processes. Figure
3(a) shows these results for 1, 2, 4 and 8 byte mes-
sages. The graph does not show much differentiation
between the message sizes, however a large difference
is seen between the application-bypass MPICH and non-
application-bypass MPICH. Notice that as the skew in-
creases, the average time spent in MPI Bcast() by
the non-application-bypass MPICH increases when the
average skew is larger then 17µs . This is as we ex-
pected because as the skew between processes increases
more processes are being delayed longer waiting for
one of their ancestors to call MPI Bcast(). How-
ever, for application-bypass MPICH, we see that the av-
erage time spent in MPI Bcast() actually decreases
as the skew increases. We don’t see an increase as
the skew increases as we did with the non-application-
bypass MPICH because even if a non-leaf process is per-
forming the delay loop when a broadcast message is re-
ceived, the process will be interrupted and the broadcast
operation will be allowed to proceed. The reason why
the average time spent in MPI Bcast() actually de-
creases is because as the time each process spends in the
delay loop increases, the probability that the broadcast
message has arrived and that the broadcast operation
has completed before the process calls MPI Bcast()
increases. If the broadcast message has arrived before
the process calls MPI Bcast(), then all that needs to
be performed in the MPI Bcast() function is to copy
the received data to the final memory location. Notice
that when the average skew is 17µs , the time the non-
application-bypass MPICH spends in MPI Bcast()
decreases compared to when there is no skew. This is
because some of the time that processes lower down in
the broadcast tree would spend waiting for the broad-
cast message to propagate down the tree is overlapped
with the delay loop. Although the broadcast message
may be delayed because a process higher up in the tree
is delayed, this delay is smaller than the time which is
overlapped.

Figure 3(b) shows the factor of improvement of per-
forming broadcasts using application-bypass MPICH
over non-application-bypass MPICH for small mes-
sages. The graph shows a factor of improvement of up to
30 for the time spent in MPI Bcast() when the aver-
age skew is 333µs and when broadcasting a 1 byte mes-
sage. The improvement for 2, 4 and 8 byte messages is
similar.

We performed the same evaluations using large mes-
sages. Figure 3(c) shows the results for 2K, 4K
and 8K messages. Again we see that the time spent

5



0

50

100

150

200

250

0 50 100 150 200 250 300 350

La
ten

cy
 (µ

se
c)

Average Skew (µsec)

n-8
n-4
n-2
n-1

ab-8
ab-4
ab-2
ab-1

(a) Latency – Small

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350

Fa
cto

r o
f Im

pr
ov

em
en

t

Average Skew (µsec)

8
4
2
1

(b) Factor of Improvement – Small

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

La
ten

cy
 (µ

se
c)

Average Skew (µsec)

n-8192
n-4096
n-2048

ab-8192
ab-4096
ab-2048

(c) Latency – Large

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350

Fa
cto

r o
f Im

pr
ov

em
en

t

Average Skew (µsec)

8192
4096
2048

(d) Factor of Improvement – Large
Figure 3. Average latency of MPI Bcast function on 32 nodes. Small messages sizes are 1, 2, 4,
and 8 bytes, and large message sizes are 2048, 4096, and 8192 bytes for non-application-bypass
MPICH (n) and application-bypass MPICH (ab)

in MPI Bcast() for application-bypass MPICH pro-
cesses decreases as the skew increases, while for non-
application-bypass MPICH processes the time increases
once the skew is large enough that the effect of the
overlap of the broadcast and delay loop is no longer
seen. Notice that even when the skew is small or even
zero, the application-bypass MPICH processes spend
less time in MPI Bcast() than the non-application-
bypass MPICH processes. We believe that this is be-
cause even when the skew is zero, and the processes
spend no time in the delay loop, the processes are still
skewed slightly due to the nature of a distributed sys-
tem. Even though a MPI Barrier() is called before
each test, not all processes will leave the barrier at ex-
actly the same time. It is possible that some processes
may receive the broadcast message while still perform-
ing the barrier. In application-bypass MPICH, when the
message is to be forwarded to the child processes, the
data will be copied from the receive buffer into the send
buffers and the messages are sent to the children. In non-
application-bypass MPICH, the message is copied into
the unexpected queue. When MPI Bcast() is called,
the data is copied out of the unexpected queue and into
the final memory location, then the data is copied from
this memory location and into the send buffers to be sent
to the child processes. Notice that the non-application-
bypass MPICH has an extra memory copy in the critical
path, which explains why we see a larger difference for
larger message sizes when the skew is small.

Figure 3(d) shows a factor of improvement in the time
spent in the MPI Bcast() function of up to 8 for 2K

messages, up to 4.2 for 4K messages, and 2.2 for 8K
messages when the average skew is 333µs .

Just considering the time a process spends in MPI
Bcast() does not consider the time the application-
bypass MPICH spends performing the operation when
a broadcast message is received before the call to
MPI Bcast() is made. In order to evaluate the impact
of performing the broadcast operation asynchronously
and of the associated interrupts on the computation, we
first timed the delay loop when there are no incoming
broadcast messages. Then we timed the total time the
process spends in the delay loop and the MPI Bcast()
call, and subtracted off the time it would have spent
in the delay loop had there been no incoming broad-
cast messages. What is left is the time the process
spends broadcasting. Figure 4 shows the results of these
tests for 32 processes. Again the graph for small mes-
sages, Figure 4(a), does not show much difference be-
tween the different message sizes, but a significant dif-
ference is seen between the application-bypass MPICH
and non-application-bypass MPICH. Notice that these
results are very similar to those for just the time spent
in MPI Bcast(). There is about a 6µs overhead
in the application-bypass case for processing broad-
cast messages by the signal handler for small messages.
Figure 4(b) shows a factor of improvement of up to
16 for application-bypass MPICH processes over non-
application-bypass MPICH processes. This is a signifi-
cant improvement over non-application-bypass MPICH.

Figure 4(c) shows the results of the same test for large
messages. As with the small messages, the results are

6



0

50

100

150

200

250

0 50 100 150 200 250 300 350

La
ten

cy
 (µ

se
c)

Average Skew (µsec)

n-8
n-4
n-2
n-1

ab-8
ab-4
ab-2
ab-1

(a) Latency – Small

0

2

4

6

8

10

12

14

16

0 50 100 150 200 250 300 350

Fa
cto

r o
f Im

pr
ov

em
en

t

Average Skew (µsec)

8
4
2
1

(b) Factor of Improvement – Small

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300 350

La
ten

cy
 (µ

se
c)

Average Skew (µsec)

n-8192
n-4096
n-2048

ab-8192
ab-4096
ab-2048

(c) Latency – Large

1

2

3

4

5

6

7

0 50 100 150 200 250 300 350

Fa
cto

r o
f Im

pr
ov

em
en

t

Average Skew (µsec)

8192
4096
2048

(d) Factor of Improvement – Large
Figure 4. Average latency of signal handler and MPI Bcast function on 32 nodes. Small mes-
sages sizes are 1, 2, 4, and 8 bytes, and large message sizes are 2048, 4096, and 8192 bytes for
non-application-bypass MPICH (n) and application-bypass MPICH (ab)

0

50

100

150

200

250

2 4 8 16 32

La
ten

cy
 (µ

se
c)

Number of Nodes

n-8
n-4
n-2
n-1

ab-8
ab-4
ab-2
ab-1

(a) Latency – Small

0

2

4

6

8

10

12

14

16

2 4 8 16 32

Fa
cto

r o
f Im

pr
ov

em
en

t

Number of Nodes

8
4
2
1

(b) Factor of Improvement – Small

0

100

200

300

400

500

600

2 4 8 16 32

La
ten

cy
 (µ

se
c)

Number of Nodes

n-8192
n-4096
n-2048

ab-8192
ab-4096
ab-2048

(c) Latency – Large

0

1

2

3

4

5

6

7

2 4 8 16 32

Fa
cto

r o
f Im

pr
ov

em
en

t

Number of Nodes

8192
4096
2048

(d) Factor of Improvement – Large
Figure 5. Average latency of signal handler and MPI Bcast function with a average skew of
333µs for various number of processes. Small messages sizes are 1, 2, 4, and 8 bytes, and
large message sizes are 2048, 4096, and 8192 bytes for non-application-bypass MPICH (n) and
application-bypass MPICH (ab)

very similar to the results for just the MPI Bcast()
function. For large messages there is about a 11µs ,
15µs , and 20µs overhead for processing 2K, 4K, and 8K
broadcast messages in the signal handler, respectively.
Figure 4(d) shows factors of improvement of up to 2 for
8K messages, 3.6 for 4K messages, and 6.2 for 2K mes-
sages. Again, these are significant improvements.

In order to see how application-bypass broadcast can
benefit systems of different sizes, we performed a test
similar to the previous, except we used an average skew
of 333µs and varied the number of processes. As be-
fore, for 32 processes, we used both the 700MHz ma-
chines and 1GHz machines, but for 16 and fewer pro-
cesses, only the 700MHz machines were used. Figure 5

7



shows these results. Notice that for small messages, in
Figure 5(a), as the system size increases the time taken
by the application-bypass MPICH processes remains al-
most constant. This is because for all but the two pro-
cess case, all of the delay of propagating the message
down the broadcast tree is overlapped by the delay loop.
The increase in time seen in the non-application-bypass
MPICH results as the number of nodes increases is due
primarily to process skew. As the number of processes
participating in the broadcast increases, the number of
processes waiting in MPI Bcast() for an ancestor to
finish the delay loop and perform the broadcast also in-
creases. We see a similar effect in Figure 5(c) for large
messages. The time increases much slower as the sys-
tem size increases for application-bypass MPICH versus
non-application-bypass MPICH. These results indicate
that the effects of process skew become more severe as
system size increases. Furthermore, they indicate that an
application-bypass approach is critical for dealing with
process skew allowing collective communications oper-
ations to be scalable.

5. Conclusions and future work
We have described our design implementation of

application-bypass broadcast and evaluated our imple-
mentation. Our evaluation shows that an application-
bypass broadcast is not as sensitive to process skew
as non-application-bypass broadcast. In fact, using the
application-bypass broadcast, we have seen a factor of
improvement of up to 16 when processes are skewed.
Furthermore we see that in a non-application-bypass
broadcast the effects of process skew increase as the sys-
tem size increases. We note that while process skew can
be reduced by careful design of parallel programs and
close control of the computing environment, we believe
that process skew cannot be eliminated altogether. For
this reason, we believe that the use of application-bypass
is critical to improving the scalability of collective com-
munication operations, and of the system in general.

We intend to implement other collective communica-
tion operations in an application-bypass manner, such as
reduction, scatter, and gather. We also intend to examine
the possibility of implementing these operations as NIC-
based operations. NIC-based operations are operations
which are performed by the NIC processor rather than
by the host [4, 6, 7, 5, 1, 13, 9, 15]. Because they are
performed at the NIC and not the host these operations
naturally bypass the application.

We also note that our implementation required mod-
ifying the NIC firmware to allow sending interrupts for
certain messages. We feel that this is a worthwhile fea-
ture and should be provided as a standard feature to com-
munication subsystems and NICs. However, we also
intend to investigate how best to provide application-
bypass features using networks which do not provide the
selective interrupt feature.

Additional Information Additional papers related to
this research can be obtained from the following Web
pages: Network-Based Computing Laboratory (http://nowlab
.cis.ohio-state.edu) and Parallel Architecture and Communica-
tion Group (http://www.cis.ohio-state.edu/ � panda/pac.html).

References
[1] R. A. F. Bhoedjang, T. Ruhl, and H. E. Bal. Efficient

Multicast on Myrinet Using Link-Level Flow Control.
In Proc. of the 27th Int’l Conf. on Parallel Processing
(ICPP ’98), pages 381–390, August 1998.

[2] N. J. Boden, D. Cohen, et al. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, pages 29–35,
Feb 1995.

[3] R. Brightwell, R. Riesen, B. Lawry, and A. B. Maccabe.
Portals 3.0: Protocol building blocks for low overhead
communication. In Proc. of the 2002 Workshop on Com-
munication Architecture for Clusters (CAC), April 2002.

[4] D. Buntinas, D. Panda, and W. Gropp. NIC-based atomic
remote memory operations in Myrinet/GM. In Workshop
on Novel Uses of System Area Networks (SAN-1), Febru-
ary 2002.

[5] D. Buntinas, D. K. Panda, J. Duato, and P. Sadayap-
pan. Broadcast/Multicast over Myrinet using NIC-
Assisted Multidestination Messages. In Proc. of Int’l
Workshop on Communication and Architectural Support
for Network-Based Parallel Computing (CANPC), pages
115–129, 2000.

[6] D. Buntinas, D. K. Panda, and P. Sadayappan. Fast NIC-
based barrier over Myrinet/GM. In Proc. of the Int’l
Parallel and Distributed Processing Symposium 2001,
(IPDPS), April 2001.

[7] D. Buntinas, D. K. Panda, and P. Sadayappan. Perfor-
mance benefits of NIC-based barrier on Myrinet/GM. In
Proc. of the Workshop on Communication Architecture
for Clusters (CAC) held in conjunction with IPDPS ’01,
April 2001.

[8] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI mes-
sage passing interface standard. Parallel Computing,
22(6):789–828, Sept. 1996.

[9] R. Kesavan and D. K. Panda. Optimal Multicast with
Packetization and Network Interface Support. In Proc. of
Int’l Conf. on Parallel Processing, pages 370–377, Aug
1997.

[10] Message Passing Interface Forum. MPI: A Message-
Passing Interface Standard, Mar 1994.

[11] Myricom. Myricom GM myrinet software and doc-
umentation. http://www.myri.com/scs/GM/doc/gm toc
.html.

[12] Pallas MPI benchmarks - PMB, part MPI-1. ftp://ftp
.pallas.com/pub/PALLAS/PMB/PMB-MPI1.pdf.

[13] R. Sivaram, R. Kesavan, D. K. Panda, and C. B. Stunkel.
Where to Provide Support for Efficient Multicasting in
Irregular Networks: Network Interface or Switch? In
Proc. of the 27th Int’l Conf. on Parallel Processing
(ICPP ’98), pages 452–459, August 1998.

[14] Sphinx parallel microbenchmark suite. http://www.llnl
.gov/CASC/sphinx/sphinx.html.

[15] K. Verstoep, K. Langendoen, and H. Bal. Efficient Reli-
able Multicast on Myrinet. In Proc. of the Int’l Conf. on
Parallel Processing, pages III:156–165, Aug 1996.

8


